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Application of the plane simple shear 
test for determination of the plastic behaviour 
of solid polymers at large strains 

CHRIST IAN G 'SELL,  SERGE BONI 
Laboratoire de Physique du Solide (LA au CNRS No. 155) ENSMIM, Parc de Saurupt, 
54042 Nancy, France 

SURESH S H R I V A S T A V A  
Department of Civil Engineering and Applied Mechanics, McGill University, 
817 Sherbrooke Street West. Montreal, Quebec, Canada 

A simple shear test apparatus was designed and used in experiments for determining the 
plastic behaviour of various amorphous and semicrystalline polymers at large shear 
strains. The geometry and dimensions of the specimens were determined after a critical 
evaluation of the test conditions, so as to avoid plastic buckling of the specimens, and to 
minimize undesirable stresses at the specimen ends. Using the present technique, it was 
possible to conduct tests at room temperature up to strains of 200% for polymethyl 
methacrylate (PMMA) and 1000% for polyethylene, without extensive crazing. Optimum 
precision and homogeneity of strains within the samples could be achieved because of 
firm guiding of the gripped specimen heads during the tests. A systematic study of the 
influence of shear strain rate and temperature on the plasticbehayiour was made par- 
ticularly for the polyethylene samples. The kinematics of large deformation simple 
shear is discussed and relations between the stress and the finite-strain tensors is pre- 
sented, with particular attention being paid to the development of normal stresses. The 
problem of end effects is also investigated. Finally, it is shown that the strain hardening 
of polyethylene under simple shear is much smaller than under uniaxial tension. A 
possible interpretation of this behaviour is proposed in terms of the uniqueness versus 
multiplicity of slip systems. 

1. Introduction 
The plastic behaviour of solid polymers at large 
strains has been investigated to a small extent, 
and only more recently, than the yield behaviour 
of solid polymers. While many authors have 
investigated the change in the yielding conditions 
with the type of loading in amorphous and semi- 
crystalline polymers, only little is known about 
the influence of deformation geometry on the 
determination of constitutive equations of  plastic 
flow. This is because, until recently, the mech- 
anical applications of polymers mostly required 
knowledge of their viscoelastic properties. How- 
ever, the solution of problems now encountered 

in the development of  forming techniques, involv- 
ing multiaxial plastic deformation (thermoforming, 
biaxial film drawing, solid extrusion or forging, 
etc.) requires a precise determination of the plastic 
properties of these materials for a wide range 
of temperature, strain rate and deformation 
geometry. 

The first efforts directed to this end were 
concerned with the tensile testing of thermo- 
plastics at large strains. Tensile stress-strain 
relations were obtained at fixed strain rates and 
temperatures, e,g. [1-4],  and computer methods 
were developed to deduce from these relations 
the evolution of the deformation of polymer rods 
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or plates subjected to an arbitrary elongation 
sequence [5, 6]. 

Another elementary mode of deformation, 
which may be used for the determination of 
plastic properties, is that  of shearing. It has been 
shown several times [7, 8] that it constitutes the 
basic process in the development of bands in the 
plastic deformation of glassy polymers. In order 
to obtain a shear stress against shear strain relation- 
ship, several authors have applied the conventional 
torsion test to polymers [9-11]. However, the 
main limitation of this test stems from the fact 
that the stress and strain fields are nonhomoge- 
neous. Hence, a precise transformation of the 
torque-twist experimental data into true stress- 
true strain curves is not possible unless rough 
approximations are used. With the view of testing 
polymers under conditions as close as possible to 
pure shear a plane-strain compression technique 
[12] was also developed and applied to acrylics. 
Unfortunately, the complexity of this test and the 
friction forces at the compression tool surface 
impose serious limitations on its application to 
large strain testing. Finally, for determining 
particular characteristics (like the shear resistance 
of fibre reinforced composites), a short beam 
shear test in three-point bending [13] has been 
standardized; however, again due to the non- 
homogeneous and complex state of deformation 
that is produced in the specimens, it cannot be 
applied to large strain testing. 

In contrast to the preceding types of tests, it 
may be noted that the plane simple shear method 
of testing is better suited to the determination of 
intrinsic material properties. In principle, it does 
not involve the strain inhomogeneities that are 
inherent in the torsion and bending tests, and it 
requires imposition of simpler boundary conditions 
than those used in the plane-strain compression 
test. Simple shear tests were initially applied to 
oriented thin polymer films, for the purpose of 
determining the shear yield stress as a function 
of the angle between the shearing direction and 
the orientation axis [ 14-16]. They have also been 
used in a fundamental study of the yield behaviour 
of glassy polymer films [17, 18]. A review of 
these papers indicates that the main problems 
encountered in the tests were associated with 
the insufficient thickness of the specimens, which 
resulted in plastic buckling and unwanted defor- 
mation in the grips. 

The aim of the present paper is to show that 

the plane simple shear test can be used with con- 
fidence to determine the plastic behaviour of solid 
polymers, provided that the geometry of the 
specimens and the mechanical features of the test 
apparatus are correctly chosen. A new type of 
testing method has been proposed and used. The 
results of tests on various amorphous and semi- 
crystalline thermoplastic polymers are presented. 
In the particular case of  high density polyethylene, 
the plastic behaviour in simple shear will be com- 
pared with that in uniaxial tension. ,~ 

2. Experimental procedures 
2.1. Characteristics of the simple shear test 
The simple shear deformation of a parallelepiped 
solid can be basically defined, as illustrated in 
Fig. 1, by the homogeneous relative glide of 
parallel planes normal to the Ox2 axis along the 
shear direction Oxl. The amount of shear is con- 
ventionally expressed (Dieter [19]) by the ratio 
3' = x / h ,  where x is the relative displacement of 
the opposite faces of the parallelepiped and h is 
the sheared width of the sample. In order to 
impose a constant shear rate q =  dT/dt, the 
opposite faces are displaced at a constant velocity 
2 =h3L The conventional shear stress will be 
defined by r =F/(Le),  where F is the shearing 
force applied to the faces normal to Ox2 and L is 
the length of the initial parallelepiped and e its 
thickness. The simple shear behaviour of a given 
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Figure 1 Definition of the reference axes and dimensions 
of a parallelepipedic piece of material deformed in simple 
shear. 
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material can be expressed as a shear stress versus 
shear relation, r(?), at a fixed values of shear rate 

and temperature T. 

2.2. Geometry and dimensions of the 
samples 

The experimental application of a simple shear 
test requires a judicious choice of the specimen 
size. Otherwise, as will be seen, the effective 
distribution of stresses and strains within the 
material is far from a homogeneous one, and the 
r(T) curves obtained from the test may not rep- 
resent the shear stress-shear strain behaviour 
accurately. 

The first problem in the testing of specimens 
in shear is their possible buckling if the thick- 
ness e is not large enough. This difficulty was 
encountered by all the authors who applied the 
shear test to thin polymer films [14-18].  It has 
been shown in another paper by Boni et al. [20] 
that the oblique folds exhibited by the sheared 
films are due to the action of compressive stresses 
which are developed in simple shear along a 
direction inclined to the shearing direction. In the 
case of  infinitesimal shear strain, it is known, for 
example Hearn [21], that a principal compressive 
stress o2 = - r appears along the direction bisect- 
ing the - -Oxx and Ox2 axis (Fig. 2a). As will 
be seen in the discussion, this simple situation is 
somewhat perturbed in the case of  large strains, 
but essentially the oblique compressive stresses 
continue to exist. The buckling of an elastic plate 
stressed in simple shear has been analysed in the 
literature (see for example, Southwell [22], 
Bleich and Bleich [23], and Timoshenko and 
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Figure 2 Diagrams the three geometrical 
limitations imposed in a simple shear test: (a) no buckling 
condition, (b) normal stress minimization, and (c) maxi- 
mum capacity of the testing machine. 

Gere [24]). According to Bleich and Bleich 
[23], the plastic buckling normally occurs when 
the applied shear stress approaches the critical 
value re = krr2Drl/h2e where D = Ee3/12(1 -- u 2) 
is the flexural rigidity of  the plate, E is Young's 
modulus, u is Poisson's ratio, k is a coefficient 
which depends upon the aspect ratio, L/h ,  of the 
plate and the boundary conditions (e.g. free or 
fixed edges) and r/ is a plastic softening factor 
approximately equal to (O/E) 1/2, where 0 is the 
strain hardening rate (e.g. the tangent modulus) 
at r e. For L/h  > 4, and for edges of the plate 
rigidly gripped, a conservative value of the 
coefficient k is equal to about 9. Using this value, 
in the condition of no buckling, r e > 7max, we 
get the first dimensional relation: 

( h )  2 > 12Tmax97r2Er/(1-/)2) (1) 

Taking as reasonable values 7ra,~,, ~ 200 MPa, E 
1000 MPa, r /~  0.12 and v = 0.35, it is found that 
the thickness to width ratio of  the specimens must 
be larger than about 0.44 to ensure that buckling 
will not occur during the shear test. 

A second limitation on the dimensions arises 
from the necessity of  minimizing the unwanted 
normal stresses due to the grip constraints. As 
shown in Fig. 2b, the couple of shearing forces 
applied on the two faces of  the specimen at a 
distance h apart gives rise to a rotational moment 
Fh, which must be counterbalanced by the forces 
exerted on the sample by the grips. These reaction 
forces give rise to stresses which are perpendicular 
to the shearing direction. Obviously, these normal 
stresses vary from compression to tension along 
the specimen faces and across the width. If one 
considers, as a first approximation, that this vari- 
ation is linear, then by equating the two moments, 
it is found that 

Fh = ~ I ?~N I eL 2 (2) 

where I ONI is the mean absolute value of these 
normal stresses within the sample. A reasonable 
minimization of this effect consists in ensuring 
that I ONF is less than or equal to 5% of the applied 
shear stress r = F/(Le).  This leads to the second 
dimensional relation: 

L 
~->  15 (3) 

It will be shown later in the discussion, that for a 
particular case, the linear approximation taken 
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above is a rather pessimistic one and that the real 
distribution tends to significantly decrease the j 
mean value f ONI. 

Lastly, one has to take into account the maxi- 
mum loading capacity, Fmax, of the machine /"-N 
which is used to apply the shearing forces. If L..,) 
rm~ is the maximum shear stress of the tested 
material at rupture, we get the third dimensional 
relation (Fig. 2c) 

L e  < Fmax (4) 
T m a x  - . ;  

In the present case, with a hydraulic actuator whose ,. . . . .  7 / 
h=4mm 
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capacity is 50 kN, and considering the maximum 
shear stress for polymers to be  lower than 250 
MPa, Equation 4 imposes the limitation L e  < 

200mm 2. Combining this result with Equations 
1 and 3, the standard specimen dimensions were 
selected as L = 60 ram, h = 4 mm and e = 3 mm. 

As shown by Boni et  al. [20] in an earlier publi- 
cation on shear tests on thin films, the films 
suffered from unwanted deformations of the 
material within the gripped portion of the speci- 
mens. In order to avoid such a situation it was 
d:ecided to design the present samples with the 
calibrated part machined out of a plate of a 
much larger thickness, as shown in Fig. 3. The 
two massive heads thus defined on both sides 
of the part to be sheared can then be gripped 
firmly with no damage to the centre of the speci- 
men. These specimens may be.machined out of 
material obtained from extruded plates- or injec- 
tion-moulded pads. In both cases, an adequate 
heat treatment might be applied to relax any 
internal stresses. 

2.3. Shear testing machine 
The testing apparatus that is described below 
was designed in order to apply the shearing forces 
to the specimen by means of a standard tensile 
machine. The main variables recorded during the 
test were the shearing force and the shearing 
displacement. In addition, with a view of obtain- 
ing information on the nature of the stress tensor 
associated with the simple shear deformation, the 
mean force experienced by the specimen normal 
to the shearing plane was also measured. 

The general features of the machine are illus- 
trated schematically in Fig. 4. Three main parts 
can be distinguished. 

1. The longitudinal slider (LS), to which one of 
the heads of the sample is attached, is connected 

' Figure 3 Geometry and dimensions of the specimens. 

to the force transducer of the tensile testing 
machine: 

2. The holding frame (HF) ensures the rigidity 
of the machine. Its longitudinal movement with 
respect to the above slider defines the shear ~ 
straining. It holds the guiding rails and the normal 
force transducer (NFT), and it is connected to 
the actuator (A) of the hydraulic tensile testing 
machine. 

3. The transverse slider (TS) is an original 
characteristic of the present apparatus..It is 

1 
LS I ~ .... 

- , T S  

Figure 4 Schematic diagram of the shearing device. 
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attached to the other head of the sample and 
provides, if desired, a second degree of freedom 
perpendicular t o  the shearing direction. In the 
course of the tests, since the width h of the 
specimen was to be kept constant, the slider was 
firmly attached to the normal force transducer 
(NFT). However, the transverse slider was allowed 
to move freely during mounting and gripping, so 
that no unwanted stresses could be introduced 
in the calibrated 15art due to head tightening. 

The drawing in Fig. 5 gives a detailed view of 
the mechanical parts of the shear testing machine. 
The holding frame and the sliders have been 
designed to be quite stiff up to a force of the order 
of  50 kN. On the other hand, the transverse slider 
must be able to move, particularly at the maximum 
load, with only a small frictional resistance, 
corresponding to a friction coefficient of about 
3/1000. This ig achieved by mounting the sliders 
on high precision bearings with cylindrical rollers 
(Schneeberger HW 20). With such bearings, the 
movement could be kept very smooth with a 
minimum play. Since the width h of  the samples 
is rather small (4mm), a good precision in the 

determination of the strain 3' = x/h can be obtained 
only if the relative displacement x of the heads 
can be imparted and measured with a similar 
precision. In view of this requirement, particular 
attention was paid to the heads gripping the 
specimen. As shown in Fig. 3, both heads have two 
holes drilled precisely at a distance of 17 mm from 
the median axis of the calibrated part. The speci- 
mens could therefore be tightened between striated 
steel plates by a set of  four bolts passing through 
these holes. In order to eliminate the error due to 
the flexure of  the bolts produced due to the shear- 
ing displacement, two blocking screws are adjusted 
before the test (labeled BS in Fig. 5). As will be 
demonstrated later, this special device enabled 
exact monitoring of the applied shear strain. 

Another interesting feature of the present 
machine is the special fixture attached to the 
transverse slider. It consists of a kind of piston 
whose screwed stem connects it to the holding 
frame. The piston is inserted in a cylindrical 
cage within the transverse slider. As was pointed 
out before, the piston may be totally free or 
blocked in the cage, for installing the specimen 
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Figure 5 Detailed drawing of  the  
machine.  
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T ABLE I 

Material Abbreviation Trade mark Compound reference Density 

High density polyethylene HDPE BASF Lupolen 52612 0.95 
Poly propylene PP HOECHST Hostalen PPH 1050 0.90 
Polyamide 6-6 PA66 BASF Ultramid A5 1.13 
Poly methylene oxide POM DUPONT Decrin 150 1.41 
Polybutene -1 PB1 HULS Vestolen BT 8000 0.914 
Polycarbonate PC BAYER Makrolon L 1.2 
Polyvinyl chloride PVC - - 1.38 
Polymethyl methacrylate PMMA - - 1.2 

or performing standard simple shear tests (con- 
stant h). However, by inserting a set of  helical 
springs between the piston and the cage end 
(Fig. 5) it is also possible to perform tests under 
constant normal stress (whether tensile or com- 
pressive). This option was not extensively used 
during the present investigation, but could be 
worthwhile for determining the critical yield 
stress of materials in biaxial state of stress. In 
such a case, it may be useful to monitor the 
variation in the sheared width :of the sample; this 
can be achieved by the normal displacement 
transducer (NDT) installed between the holding 
frame and the transverse slider. 

This shearing apparatus was mounted on an 
MTS closed-loop hydraulic testing machine 
equipped with an environmental chamber for 
testing under controlled temperature. Simple 
shear tests could then be performed at shear strain 
rates 3~ between 10 -1 to 10 -s sec -1, and at tem- 
peratures between - 100 to 200 ~ C. Using proper 
calibration of the electronic recording table, to 
which the transducers (displacement, load and 
mean normal force) were connected, it was possible 

to display directly the results of the tests as shear 
stress against shear strain, and mean normal stress 
against shear strain curves. 

2.4 Tested materials 
All the specimens tested in the course of  this 
study were machined out of  commercially avail- 
able extruded plates of 10mm thickness. Their 
reference and densities are given in Table I. The 
first five of them are highly crystalline (HDPE, 
PP, PA66, POM and PB1), while the last three, 
can be considered as glassy amorphous polymers. 
Only HDPE was tested for a wide range of experi- 
mental conditions (strain rate and temperature). 
The other materials were tested mainly with the 
view of determining suitability of the testing 
method. 

3. Experimental results 
3.1. Feasibility of the simple shear test 
The stress-strain curves displayed in Fig. 6 for the 
eight tested polymers show that the simple shear 
testing technique can be applied to ductile polymers 
as well as to brittle ones. It can be seen that in the 
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Figure 6 Typical shear stress-  
shear strain curves obtained with 
different polymers. 
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case of  polymethyl methacrylate, for instance, 
rupture occurs at a shear strain as large as 200%, 
while in tension the same material breaks at room 
temperature after being strained by only a few per 
cent. As shown before in torsion experiments 
[9-10],  the simple shear loading is well suited 
for studying the plasticity of  polymeric materials 
which usually develop early crazing in tension. 
This is because the critical conditions for craze 
opening are not fulfilled in simple shear, as demon- 
strated before in the literature [25]. In the case of 
usually ductile materials (such as HDPE), the 
shear test can be conducted up to strains larger 
than 1000%. 

The yield behaviour in simple shear is different 
for glassy amorphous and for semi-crystalline 
polymers. For the first category (PMMA, PC and 
PVC), the transition between the viscoelastic stage 
and the plastic stage is marked by a stress drop 
whose magnitude is more pronounced in some 
cases than others, but which is always very abrupt. 
In the case of  crystalline polymers (POM, PA66, 
PB1, PP and HDPE), the yield behaviour is more 
gradual and the viscoelastic to plastic transition 
appears as a rounded off knee on the curve. 
However, some of these polymers (PP and HDPE) 
do show a small stress drop at the beginning of the 
plastic stage, but as will be shown later, this 
transient behaviour is extended over a much larger 
strain range than that for glassy polymers. 

The strain hardening in simple shear appears to 
be smaller for semi-crystalline than for glassy 
polymers. In both cases, however, it does not 
increase very much with strain in contrast to the 
large increase of  strain-hardening observed in 
tension test when the plastic behaviour is dis- 
played in terms of true stress: true strain curve 
at constant true strain rate (G'Setl and Jonas 
[3], Hope et  al. [4]). This point which will be 
discussed later, can also explain the very large 
strains experienced by these materials in simple 
shear. 

Specimen rupture occurs in different modes 
according to the material. Two typical examples 
are given in Fig. 7 with the photographs of PMMA 
and HDPE specimens deformed up to rupture. 
In the first case, fracture occurred in a very brittle 
way by the initiation and propagation of the 
oblique sharp cracks from the exterior corners at 
the specimen ends. In the second case, after a 
much larger plastic deformation, a fibrillar crack 
propagated slowly near the heads of  the sample, 

Figure 7 Photographs of tested samples of PMMA and 
HDPE showing the different rupture types of these two 
materials. 

starting from the interior corner at the specimen 
ends. 

It appears then that the extension of simple 
shear tests to ultra large strains is limited by end 
effects which favour the development of tensile 
stresses causing the cracks. With regard of this 
limitation the torsion test should prove superior, 
since the shearing is axisymmetric. However, as 
shown in previous studies [9, 26], this advantage 
is only an apparent one since plastic instability 
soon occurs, so that the final attainable strain is 
not larger than in the present technique. 

3.2. Detailed stress-strain behaviour of 
high density polyethylene in simple 
shear 

Much attention was paid in this study to the 
plastic shear behaviour of HDPE, which was 
investigated previously in uniaxial tension by 
one of the authors (G'Sell and Jonas [3], G'Sell 
et al. [6]). 

The upper curve of Fig. 8 shows the complete 
shear stress against shear strain curve of HDPE 
obtained at room temperature for a slow strain 
rate d 3 , / d t = 3  x 10 .3 s e c  t. The curve can be 
broken up into five stages. 

1. Stage I corresponds to the initial visco- 
elastic response of the material. Unloading the 
sample in this stage makes the strain revert to 
zero with a delay of the same order as the loading 
time. 

2. Stage II beginning at 3' = 0.3, is marked by 
a sudden decrease in the slope of the curve. As 
shown in Fig. 9, the amount of short term recover- 
able deformation begins to be reduced abruptly 
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Figure 8 Successive stages of defor- 
mation shown by the complete shear 
stress against shear strain curve for 
HDPE. Also evolution of the normal 
compressive stress during a shear test. 

within this stage; it can, therefore, be defined as 
the onset of  plastic response. The slope decreases 
gradually until a maximum stress "/'max = 14.3 MPa 
is reached at about 3  ̀= 1. 

3. Stage III corresponds to a stress drop of  very 
small amplitude (~'max -- rain = 1.3 MPa), spread 
over a strain range from 1 to 2.6. A careful analysis 
of  the geometric and thermal evolution of  the 
specimen has shown that this stress drop cannot 
be attributed to a reduction of  the sample cross- 
section (as in the case of  necking in tensile testing 
[3])  nor can it arise from an adiabatic self-heating 
of  the material. (Local measurements in a small 
cavity drilled at the level of  the sheared portion 
showed that the temperature increase was as small 
as 1 ~ C.) Its origin has been discussed on the basis 
of  a microstructural model involving crystallite 
rotation by Boni [27]. 
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Figure 9 Percentage of short term recoverable strain 
measured by unloading sequences during a simple shear 
test with HDPE. 

4. Stage IV covers a very large range of  shear 
strain, from 3' = 2.6 to 3" ~-- 10. It is mainly due to 
plastic deformations and one can note that the 
strain hardening rate is quite moderate since it is 
only equal to 1.3 MPa at the end of  the stage. 

5. Stage V is associated with the gradual devel- 
opment o f  cracks along the boundary of  the 
heads. As discussed before, rupture begins at the 
specimen ends and then, due to the inclination 
o f  the tensile principal stress, propagates by a 
succession of  steps. 

The lower curve in Fig. 8 displays the variation 
of  the mean normal stress measured during the test 
perpendicular to the direction o f  simple shear by 
the normal force transducer attached to the trans- 
verse slider of the machine. The normal stress is 
compressive. It exhibits a wavy variation during 
stages I, II and III and then increases slowly during 
stage IV until it reaches 35% of  the applied shear 
stress. For strains larger than 6.4, the normal stress 
decreases gradually. It can be noted at this point 
that if the shear test were performed with no 
normal constraint on the specimen heads (trans- 
verse slider being free), the specimen width would 
increase (up to about 38% of  its original value), 
with a corresponding reduction in the thickness 
so that the volume would remain essentially 
constant. 

3.3. Homogeneity of the shear strain 
Several tests were performed with polyethylene 
samples which were previously printed with a 
square array o f  small dots on the calibrated 
portion. Photographs were taken sequentially 
during the tests so that the evolution of  local 
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(e) 7_- O. (b) 7 -0 .2  (c) 7-0.6 (d) 7-1. (e) 7- 2. (f) 7 .5 .  
Figure 10 Distortion during a simple shear test of a square array of small dots printed on the specimen surface and 
observed in situ under stress at different values of the shear strain. 

shear deformation could be followed without  
hindering the material  response (Fig. 10). Photo- 
graphs obtained up to 7 = i show that  the defor- 
mat ion is nearly homogeneous, except in the end 
regions where the rows of  dots are seen to split 
as in a fan; local compressive strains are induced 
near one head and local tensile strains near the 
other head of  an end region. (This situation at 
the ends is closely related to the distribution of  
constraint stresses depicted in Fig. 2b.) I t  is seen, 
however, t h a t  the local inhomogeneity at the 
ends spread only over a distance of  the order of  
the specimen width, h = 4mm.  As observed in 
Fig. 10d, the  sheared array o f  dots at 7 =  1 
exhibits again a square-like symmetry.  This demon- 
strates that  the applied shear strain is uniform to 
a very good precision, thanks to the special screws 
which block the movement o f  the sample heads 
prior to the test initiation. 

The photographs obtained at larger strains are 

more difficult to analyse because some of  the 
adhesive dots tend to be torn.  It is found, however, 
that stage III  o f  the stress against strain curve 
(stress drop) is associated with a development of  a 
strain inhomogeneity;  a vaguely defined shear 
band develops in the median part of  the speci- 
men where the local shear is larger by  about 1 
than the mean applied shear. A detailed investi- 
gation presented by Boni [27] shows that  this 
plastic instabili ty heals gradually at larger strains 
so that the deformation retrieves its original 
homogeneity at 3' ~- 5. 

3.4. Influence of strain rate and 
temperature 

The shear stress against shear strain curves dis- 
played in Fig. 11 were obtained with uniform 
shear strain rates, ~ = dT/dt, ranging from 3 x 
10 -s to 5 •  10 - l s e c  -1. One notes at once that 
the curves at the fastest strain rates diverge from 
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Figure 11 Influence o f  the strain rate on  the  simple 
shear behaviour o f  polyethylene.  

the general tendency that the stress increases 
with increasing strain rate. In agreement with the 
investigation by Hall [28] on tensile tests, this 
observation is explained by the noticeable self- 
heating which appears at strain rates faster than 
3 x 10 -2 sec -1. A simple thermal computation 
shows indeed that the heat dissipated by plastic 
deformation within the calibrated part can be 
eliminated mainly by conduction towards the 
heads of the samples and that a rather sharp 
transition is observed around ~ = 3 x 10 -2 sec  -1 

from the isothermal to adiabatic region. 
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Figure 12 Influence o f  temperature  oil the  simple shear 
behaviour of  polyethylene.  
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For slow strain rates it is observed that the 
influence of the strain rate is different in the yield 
region (stages II and III) and in the long plastic 
region (stage IV). The stress drop is considerably 
reduced in magnitude as the strain rate decreases. 
(By extrapolating the data, it can be deduced 
that the drop would be suppressed completely 
at about 10 -7 sec -1, which indicates its transient 
nature.) Conversely, in the steady-state, stage IV, 
the stress is gradually lowered with decreasing rate, 
but the strain-hardening stays equal, so that one 
curve could be obtained from another by a vertical 
shift. 

All the curves in Fig. 12 were obtained at the 
same strain rate (3 x 10 -3 sec-1), at temperatures 
from - -37  to 120 ~ C. It is seen that the yield drop 
is suppressed completely at temperatures approach- 
ing the melting point. At low temperatures, the 
drop is also attenuated, but this is due both to the 
rise of stage II critical stress and to the increase 
in the strain-hardening of stage IV. Lastly, one can 
note that the ultimate strain at rupture is decreased 
drastically at low temperatures since the stress 
concentrations at sample ends cannot be relaxed 
very easily. 

From such a set of  curves, a constitutive 
equation can be derived to describe the plastic 
behaviour. Such an analysis has been presented 
previously by Boni [27]. 

4. Discussion 
4.1. Kinematics of simple shear 

deformation 
Consider a rectangular parallelepipedic body 
whose material points in the undeformed state are 
specified by the Cartesian coordinates X1, X2 and 
X3 parallel to its three edges. A deformation of the 



solid in simple shear is described by 

x l = X, + 3'(0 )(2 

X 2 = X 2 

X 3 = X 3 ( 5 )  

where xl ,  x2 and xa are the Cartesian coordinates 
of  the material points after deformation. Since x i 
are linear functions of Xi, the deformation is 
homogeneous. A circle of  radius 1 drawn on the 
X 1 - X 2  face (i.e. X~I + X~ = 1) deforms into 
an ellipse [29] 

x l  -- 23"x,x2 + x~ (3"2 + 1) = 1. (6) 

The orientations of  the major and the minor 
axes of this ellipse are as shown in Fig. 13. As 
discussed below, these axes define the principal 
axes of strain in their current position. The angle 
a which the major axis of  the ellipse makes with 
the OXl axis, can be shown to be equal to �89 -1 
(2/3'). Thus, in contrast to the small strain theory 
(for which 3 ' ~ 1  and a = 4 5 ~  it is seen that 
~ < 4 5  ~ and decreases progressively with the 
deformation. The above geometric interpretation 
can be shown equivalent to the following analytic 
definition of finite strain: 

2~ ~ = 6 o _  ~ OX~ OXk 
lr 1 aN i aXj : (7) 

where 8iS is the Kronecker delta and %. are the 
Cartesian components of  the Eulerian finite strain 
tensor [30]. Using Equations 5 and 7 it follows 
that in the case of  simple shear this tensor is 

[r~] = n o  = /2 - 3 ' 2 / 2  . (8) 

0 

Now, from the Mohr's circle construction, it 
can be verified that the principal strains rh and.~h 
have the same direction as the major and minor 
axes of the strain ellipse (Equation 6) and that the 
value of a principal strain is related to the length 
of the axis with which it coincides. Thus there is a 
complete correspondence between the analytical 
definition Equation 8 and the graphical represen- 
tation, Fig. 13. 

Another kinematic quantity of importance 
is the rate of deformation tensor, which i s  a 
measure of the immediate change of configuration 

\ 

I 1 

I l 
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(a) (b) 

\ f. 
\, \ 

Figure 13 Distortion of a offole under s~plo shear and 
geometrical definition of the principal axes of strain. 

with respect to the current configuration of the 
body. It is defined as 

2Dij = [3x~ axi] (9) 

where v i the i TM velocity component of a material 
point. For the simple shear deformation this 
tensor is 

[D] = D o = [ :1 
o 5,/2 o 

5'/2 0 (10) 

LO 0 

where 5' is the shear rate. Here, in contrast to the  
total components, we note that the rate com- 
ponents maintain their principal values at 45 ~ 
regardless of how large the shear (3') is. These two 
tensors will be used in the following discussion 
of the constitutive equations. 

4.2. Relation of stress tensor to 
deformation 

As a simple example of constitutive equations, we 
first consider the simple shear deformation of an 
isotropic rigid-plastic body (exhibiting no elasticity) 
and obeying the yon Nises yield condition. The 
constitutive equations for such a material are given 
by the Mises flow rule, i.e. 

~  ~ij fDij  (11) 

where 0 0 is the component of  the true stress 
tensor, p = (on + 022 + 033)/3 is the "hydro- 
static" part of the stress andf i s  a function express- 
ing the hardening characteristic of the material. 
Equation 11 states that  the material response is 
such that the principal axes of stress tensor [0] 
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coincide with the principal axes of  deformation 
rate tensor [D]. This condition of  the coincidence 
of  the two sets o f  principal axes signifies isotropic 
behaviour. Since the principal axes of  [D] in the 
simple shear deformation remain at 45 ~ with 
respect to the coordinate axes, so do the principal 
axes of  [o]. Also since no traction is applied at the 
faces x3 = constant, one has p = 0 and thus, the 
only stresses present are the shear stresses 0.12 = 
o21=fq/2. In other words, no normal stresses 
are induced regardless of  how large shear (3') is. 
Fig. 14a shows the Mohr's circle for this state of  
stress. 

We consider next the constitutive equations 
for an isotropic elastic solid. The concept of  
elasticity is usually taken to mean that the stress 
is dependent only on the strain measured from a 
natural, stress-free state and not on the strain 
rate or strain path. Based on these assumptions, 
it can be shown that the principal axes of  stress 
tensor [0"] are coincident with the principal 
axes of  strain tensor [~/]. Taking into account 
the resulting rotation of  the principal axes, the 
state of  stress is then represented by the Mohr's 
circle in Fig. 14b for the case of  simple shear. It 
is seen that  due to the finiteness of  strain, not 
only the shear stress oh2 but also the normal 
stress, 0"11, (/22 and 0"aa are required to produce 
the shear deformation. (For infinitesimal 3', the 
normal stresses should, of  course, be negligible.) 
The presence of  the normal stress is known as the 
Kelvin effect [30]. Since the angle/3 in the Mohr's 
circle in Fig. 14b is given by/7 = �89 (2/7), the 
normal stresses are then related to the shear stress 
by 

0"12 = (0"11  - -  0 " 2 2 ) / 3 ' '  (12) 

Equation 12 holds independent of  the material 
response functions and thus, is a consequence 

I~i '%2 ~ O . i l S i l  '%2 

b 0"12 0"12 
Perfectly Plastic Material isotropic Elastic MateriQI 
(Q) (b) 

Figure 14Mohr's circle representation of the stresses 
under simple shear: (a) for a perfectly plastic material, 
and (b) for an isotropic elastic material. 
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solely of  the assumption of  isotropic, elastic 
material behaviour. It is, therefore, called a uni- 
versal relation. In addition, since a127 is always 
positive, it follows that 0.11-- 022 > 0. This 
inequality of  the normal stresses is known as the 
Poynting effect [30]. If  the material is compressible, 
then, since simple shear is a volume preserving 
deformation, the hydrostatic part of  the stress 
must be zero, i.e. 011 + o22 + 0"33 = 0. In this case, 
the stress a33 is non-zero and is determined by the 
material response. It must be applied to maintain 
the state of  plane simple shear, and failure to do so 
will result in some change of  dimension in the x3 
direction. However, on the basis of  experimental 
observations, it is reasonable to postulate that for 
nearly incompressible materials, such thickness 
changes are negligible, and aa3, if allowed to 
develop, would remain small. This assumption 
then leads to  0.11 ~ - -  0 .22  ~ a127[2. 

If  one considers now the case when the material 
undergoes both the finite elastic and the finite 
plastic deformations, the situation is far from 
clear, and is a subject o f  current controversy 
[31,32].  According to Lee and McMeeking 
[32], if the strains are finite, then in general deij 
(elastic) 4= dei~ (recoverable) and, deii (plastic) =~ 
deij (residual). In other words, there is a coupling 
effect between the elastic and plastic strains, and 
the elastic increment of  strain is not fully recovered 
when the increment of  stress is removed. However, 
if the elastic strains are small (as for example, in 
the case o f  metals), or if the deformation is such 
that the principal axes of  strain do not rotate 
(for example in a tension test), then such effects 
are either negligible or absent. In view of  the 
unsettled state of  the above matter, and relatively 
small elastic strains, we assume in analogy with the 
tension test, that 7 = 3'elastic + 3'pla.~e, where 
3'elastic is the short term recoverable strain shown 
in Fig. 9 for a typical test on polyethylene samples. 
The normal stress effect may be considered solely 
due to this component  of  strain. Then as discussed 
above, the normal stress 022 monitored during the 
test should vary according to the relation I0.221 = 
(�89 where z is the applied shear stress. 
Fig. 15 shows that the experimentally measured 
normal stress is indeed of  the same order of  
magnitude as the predicted one, up to 3' ~ 6. For 
very large strains, however, one observes a drop in 
the normal stress. This drop can be due to the 
development o f  an anisotropic fibrous texture 
in the highly deformed polymer sample. 
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Figure 15 Comparison of the normal compressive stress 
recorded experimentally and predicted by the model. 

In conclusion, it may be stated that for the 
materials presently tested, the applied shear stress 
z, as measured in the simple shear tests, is fairly 
close to the true shear stress, and can be used for 
expressing the true shear stress-true shear strain 
behaviour of these materials in the plastic range. 
That the normal stresses cause no major pertur- 
bation of the state of pure shear stresses (on  = 
0.21 = r, other 0.u ~ 0), is seen by noting that 
rmax = Z[1 + (O22/r) 2] 1/2, from the Mohr's circle 
Fig. 14b, is larger than z by at most 6%, when the 
normal stress is maximum. 

4.3. End e f fec t s  
The observation of the deformation by means of 
a grid of dots, (Fig. 10) has proved that the ends 
of the specimens were affected by strain inhomo- 
geneity. This perturbation had two apsects: 1. the 
lines of dots normally parallel to the shear direction 
were either compressed against one head, or pulled 
aside near the other head, and 2. the free side of 
the sample was curved and had a convex (bulging) 
curvature. These observations are explained on one 
hand by the constraint effect of  the grips, which 
react against the rotational moment imposed by 
the couple of  the shearing forces, and on the 
other hand by the deparature from the ideal 
simple shear condition in which the ends of the 
specimen must also carry appropriate tractions, in 
general normal to and parallel to the end surfaces. 

In order to check the general validity of these 
observations, the stresses, strains and displace- 
ments in a model specimen were calculated by the 
finite element method with the NONSAP program 
developed at the University of  California by 
Bathe e t  al. [33]. True to the experimental con- 
dition, the transverse end surfaces in the finite 
element model were considered to be traction 
free, and the longitudinal surfaces were given a 
relative shear displacement. The material was 
taken to be isotropic elastic, with a Mooney-  

Rivlin strain energy function [30] With such an 
elastic behaviour, the components of the stress 
tensor under simple shear can be shown to be 
all = 2C172, a22 = - -  2C23` 2 and o'12 = 2(C1 + 
C2)3`. In order to simulate the zero hydrostatic 
hydropressure postulated above, a unique value 
of 10 MPa was assigned to both constants C1 and 
6"2. The specimen size, for the demonstration 
purpose, was chosen as shown in Fig. 16a, and 
was divided into several small rectangular elements. 
Fig. 16b shows the deformed geometry of the 
specimen and its elements at 3' = 1. We note that 
essentially all the features of the end effects 
detected experimentally are reproduced by the 
finite element calculations. In particular, the 
presence of the tensile and compressive strains 
which affect the zones near both heads is apparent 
by the curvature of the lines parallel to the X1 axis. 

In considering the application of the present 
testing technique, the occurrence of the zones of 
localized transverse tensile stresses at the specimen 
ends is worrisome, because it leads to the develop- 
ment of  flaws during the testing. This problem was 
encountered when the present technique was 
applied to the simple shear testing of carbon 
fibre-reinforced polymers. It was found that the 
measured interlaminar shear strength was exceed- 
ingly low, due to the preferential opening of 
cracks along the fibres at the specimen ends. In 
agreement with the previous conclusions of 
Whitney [34], it was shown that a correct value 
of the shear strength of the composite materials 
was obtained by orienting the specimen so that the 
fibres are perpendicular to the shear direction. 
Fortunately, in the present case of thermoplastic 
polymers, this problem of local embrittlement at 
the specimen ends becomes critical only at large 
strains. Furthermore, the perturbation to the 
strain distribution caused by the end effect is 
shown by Fig. 16 to be significant only in end 
zones of  length equal to the width of the sample. 
Hence, because of their large length to width 
ratio, the overall perturbation is negligible in the 
present specimens. 

4.4. Comparison of the plastic behaviour 
in simple shear and in uniaxial tension 

It has been noted in a previous section, that the 
strain hardening capability of the polymers tested 
in simple shear was found to be rather weak. In 
order to compare the present results with those 
obtained in the tensile tests, the stress-strain 
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Figure 16 Finite element pre- 
diction of the end effects during 
the simple shear of Mooney- 
Rivlin elastic material: (a) unde- 
formed grid, and (b) deformed 
grid at ~, = 1. 

data obtained from both types of  tests must be 
converted into the equivalent stress-equivalent 
plastic strain curves. If  the material obeys the 
yon Mises yield criterion and if the progressive 
strain hardening does not induce any anisotropy, 
then the equivalent stress-equivalent plastic 
curves should be the same for the two types Of 
test, or, in fact, for any general (multiaxial) 
deformation path. 

The yon Mises equivalent stress in simple shear 
is given by 

Oeq ~ [3(r 2 + O~r) t/2] ~ 31/2~" (13) 

where r = o12 and oN = la221 ~ oll under the 
assumptions discussed above. 

The calculation of  the equivalent plastic strain 
is not straight forward, and has been presented for 
the case of  simple shear by Canova et al. [35]. It 

is obtained by integrating its increment deeq along 
the deformation path. Actually, the increments 
refer to the plastic strain only. Ignoring this restric- 
tion which is relevant only at small strains, the 
equivalent strain is given by 

eeq = "//(31/2). (14) 

From the definitions and Equations 13 and 14, the 
equivalent Stress-equivalent strain 'curve was 
obtained for ~the simple shear test d n the poly- 
ethylene saml~le performed at the strain rate 

= 3 x 10 -3 sec ~1. The corresponding curve for 
the tension test was obtained at e l l =  1.7 x 10 -3 
sec -1, using the technique described by G'Sell and 
Jonas [3 ] which gives the true stress-true strain 
curve at conStant true strain rate. These curves are 
shown in Fig. 17. It  may noted that the specimens 
for both  types of  tests were machined from the 
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sample plate. By comparising the two curves, it 
can be seen that 1. the equivalent yield stress is 
very close in tension and in simple shear, as found 
previously from torsion tests at small strains [36] 
(the difference o f  about 15% between the equiva- 
lent yield stresses in uniaxial tension and in simple 
shear can be due to experimental errors and also 
to the limited adequacy of  the yon Mises criterion 
to represent the critical yielding conditions) and 
2. the strain hardening in tension is far larger 
than in simple shear. 

The interpretation o f  the noticeable difference 
between the curves at large strain is now under 
investigation. At this stage of  the study, it is 
postulated that it could be due to the develop- 
ment of  different microscopic textures in speci- 
mens deforming under the two states of  strain, 
as proposed earlier for metals by Gil-Sevillano and 
Aernoudt [37]. It appears here that whereas 
simple shear favours the glide of  macromolecular 
chain along a unique plane, tensile drawing initiates 
glide on an infinitude o f  intersecting planes 
included to the tensile axis, leading to the for- 
mation o f  chain tangles which increase the resis- 
tance to further plastic flow. 

5. S u m m a r y  and conclusions 
Plane simple shear tests were performed at con- 
stant shear strain rate on various thermoplastic 
polymers by means of  a new type of  shearing 
apparatus. It was shown that a nearly homogeneous 
plastic shear strain could be achieved without 
buckling, provided the thickness, width and 

length of  the sample's calibrated part are pro- 
portional to 3, 4 and 60, respectively. Due to the 
absence of  crazing, large shear strains could be 
reached before rupture, even for polymers which 
exhibit a very brittle behaviour in tension, e.g. 
PMMA. In the particular case o f  HDPE, the 
plastic behaviour (7, "L r) was determined from a 
series o f  tests at different strain rates and tempera- 
tures. It was found that the shear stress is highly 
dependent on temperature while the strain rate 
sensitivity is rather small. Also the strain hardening 
under simple shear was found to be very small, in 
comparison with the uniaxial tensile behaviour 
(compared on the basis of  equivalent stress and 
strain). It appears then that the simple shear test, 
if conducted with proper sample size and machine 
strength, gives reliable stress-strain data which 
can be used in conjunction with tensile test 
data to predict plastic behaviour of  polymers 
under more complex state of  strain and stress. 
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